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ABSTRACT

Being a promising technology which is envisioned to pervade numerous aspects of human life,

wireless sensor networks are attracting remarkable attention in research community. The typical wire-

less sensors are small low-power, resource-constrained devices subject to functional failures which

could be due to power loss or even malicious attacks on the devices. As the projected applications for

wireless sensor networks range from smart applications such as traffic monitoring to critical military

applications such as measuring levels of gas concentration in battle fields, security in sensor networks

becomes a prime concern. In sensitive applications, it becomes imperative to continuously monitor

the transient state of the system rather than steady state observations and take requisite preventive and

corrective actions, if necessary. Also, the network is prone to attack by adversaries who intend to dis-

rupt the functioning of the system by compromising the sensor nodes and injecting false data into the

network. So it is important to shield the sensor network from false data injection attacks. Through this

work, we prove that in the presence of adversaries, it would be difficult to correctly observe the tran-

sient phenomenon if sensors report just their readings. We develop a novel robust statistical framework

to monitor correctly the transient phenomenon while limiting the impact of false data injection. In

this framework, each sensor does a lightweight computation and reports a statistical digest in addition

to the current sensed reading. Through a series of carefully-designed inter-sensor statistical tests on

both the readings and digests, we are able to achieve our goal of preserving the transient phenomenon.

We show a concrete realization of our statistical framework by developing a secure statistical scheme,

called SSTF, to effectively monitor the transient phenomenon while being immune to false data injec-

tion attacks. SSTF is a two-tier system and the kernel of SSTF is our statistical framework, which is

employed atop an enhanced version of the IHHAS security scheme. We present detailed theoretical

analysis and in-depth simulation results to demonstrate the effectiveness of SSTF.
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CHAPTER 1. INTRODUCTION

“On an uninhabited island off the coast of Maine, tiny wireless sensors deep in the bur-

rows of mysterious sea birds monitor the environmental factors affecting the shy creatures’

comings and goings. In one of Intels chip fabrication facilities, similar sensors measure the

subtle vibrations of various machines to detect malfunctions before the equipment breaks

down. At an Air Force base across the country, dozens of small sensors scattered across a

bogus battlefield outperform tripwires, without the wires. Meanwhile, at the University of

California at Berkeley, sensors embedded in a mock buildings walls diagnose its seismic

stability after a simulated earthquake. Experimental sensor networks like these are open-

ing up new vistas for scientists and engineers to observe physical phenomena and react to

it.” (Source: http://www.intel.com/research/exploratory/instrument world.htm)

1.1 Overview

Advances in hardware miniaturization and integration have made it possible to design tiny sensor

devices that combine sensing with computation, storage and communication capabilities, although lim-

ited in capacity. Wireless sensor networks are envisaged to be deployed in a variety of applications

including environmental monitoring, wildlife habitat monitoring, wildfire tracking, real-time traffic

monitoring, smart homes and many more applications. It is envisioned that sensor networks will con-

tinue to penetrate many civil and military applications, which may include hostile environments and

sensitive and mission-critical scenarios.

Typically, each sensor collects the data from the physical environment and it needs to send this

to a distant home server or a central monitoring location, usually referred to as the base station. The

simplest way for the sensors would be to sense and send the data to the base station for analysis.
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However, this would generate too much traffic in the network and consequently, aggregation and in-

network processing have been proposed as a solution to minimize the traffic in the network. Also,

communication over the radio is costlier than local computation which further warrants for opting the

aggregation approach.

Further, sensor nodes may be deployed in hostile environments and due to the sheer magnitude of

number of nodes deployed in a network, it is infeasible to physically monitor all of them. As such, the

network and sensor nodes are susceptible to various types of attacks from adversaries. Particularly, the

nodes may be captured or compromised, and all the secret information stored in the nodes would be

known to the adversary, who can then easily inject false reports about the phenomenon to be monitored.

Such attacks are called false data injection attacks Zhu et al. (2004).

1.2 Motivation and key ideas

The issue of preventing false data injection attacks has attracted substantial research interests Zhu

et al. (2004); Ye et al. (2004); Yang and Lu (2004); Yu and Guan (2006); Przydatek et al. (2003).

Most existing schemes assume that each individual sensor reports only the sensed reading. So, if

the values reported by sensors do not agree to each other, data is considered false and rejected by

some process akin to majority voting where all other sensors should agree. Consider a scenario where

the phenomenon to be monitored has transient temporal and spatial variations. In this case, different

sensors may sense different readings and may not agree to each other all the time. Such transient data,

though genuine and important, will be classified by existing schemes as false and rejected. Motivated

by this observation, we address the distinction between genuine transient data vis-a-vis injected false

data in this paper.

Sensor networks are typically organized into clusters. Each cluster has a Cluster Head (CH) re-

sponsible for collecting data from sensors in the cluster, doing aggregation and forwarding the result to

a distant Base Station (BS). We propose SSTF, a novel Secure Statistical scheme to distinguish data

Transience from False injection in a clustered wireless sensor network. The key ideas of SSTF are

twofold. Firstly, each sensor computes a statistical digest of the monitored phenomenon over a moving

window of recent readings, and reports this digest along with the current reading to CH . By utilizing
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the statistical digests to aid in decision making and data aggregation at the CH , SSTF is able to distin-

guish transient data from false data in most scenarios, which is very difficult if only the current sensed

readings are reported by individual sensors. Secondly, SSTF requires the CH to perform a series of

carefully-designed inter-sensor statistical tests on both readings and digests reported by individual sen-

sors. Since the false data reported by the compromised node has to pass the inter-sensor tests to escape

detection, the impact of false data on the aggregation process is significantly restricted. We enhance the

IHHAS (Interleaved Hop-by-Hop Authentication Scheme) scheme proposed in Zhu et al. (2004) and

use it as the security framework for SSTF.

1.3 Thesis outline

Following the introduction, this thesis is organized as follows. We discuss the related work in

Chapter 2 and give the system model and problem statement in Chapter 3. We describe the statistical

framework of the proposed SSTF scheme in Chapter 4, present a realization of SSTF based on the en-

hanced version of IHHAS in Chapter 5, and analyze its security performance in Chapter 6. Simulation

results are presented in Chapter 7. Finally, we present conclusions and future work in Chapter 8.
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CHAPTER 2. REVIEW OF LITERATURE

In this chapter, we present some relevant research pertaining to false data filtering, secure aggrega-

tion, trust management and outlier detection in wireless sensor networks.

2.1 False Data Filtering

Ye et al. (2004) propose a statistical en-route filtering scheme (SEF), which allows both BS and

en-route nodes to detect false data with a certain probability. Zhu et al. (2004) propose an Interleaved

Hop-by-Hop Authentication Scheme (IHHAS) where pairwise keys are established between nodes that

are (t + 1) hops away; with IHHAS, up to t compromised nodes can be tolerated. Yang and Lu (2004)

present a commutative cipher based en-route filtering scheme (CCEF) which is based on public-key

algorithms that have been reported not suitable for sensor networks due to limited resource capacity of

sensor nodes Eschenauer and Gligor (2002). Yu and Guan (2006) present a dynamic en-route false data

filtering scheme which alleviates the constraint of fixed path requirement between BS and CH in Zhu

et al. (2004); Yang and Lu (2004), thus making the scheme better suited to deal with dynamic topology

of sensor networks. Zhang et al. (2006) present an interleaved authentication scheme for filtering false

data in multipath routing based sensor networks.

2.2 Secure Aggregation

Przydatek et al. (2003) present SIA for secure aggregation in sensor networks. It provides schemes

to compute a few aggregation primitives in a secure manner when queried by trusted outside users.

Mahimkar and Rappaport (2004) present SecureDAV which uses Merkle Hash Trees to avoid over-

reliance on CH . Since attacker does not know the cluster key, it cannot generate the full signature.

Assuming a trusted BS, Wagner (2004) discusses which aggregation functions can be meaningfully
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computed with resilience. However, Wagner (2004) does not consider in-network aggregation and only

BS does the aggregation. Hu and Evans (2003) propose a secure hop-by-hop aggregation scheme

that works if a single node is compromised. Yang et al. (2006) present SDAP which organizes sensor

nodes into a tree topology and performs a commitment-based hop-by-hop aggregation in each subtree

to generate a group-aggregated result.

2.3 Trust Management

Srinivasan et al. (2006) identify four components in a reputation and trust-based system: infor-

mation gathering, information sharing, information modeling, and decision making. Past promi-

nent works dealing with reputation and trust based models for ad-hoc and sensor networks include

CORE Michiardi and Molva (2002), CONFIDANT Buchegger and Boudec (2002) and RFSN Ganer-

iwal and Srivastava (2004). Recently Zhang et al. (2006) present a trust based framework for secure

data aggregation referred to as TBFSDA. While CORE and CONFIDANT utilize ratings and reputa-

tion tables to implement trust amongst the nodes and are more suitable for mobile ad-hoc networks,

RFSN and TBFSDA are designed specifically for wireless sensor networks and they rely on Bayesian

and belief propagation models to implement trust and reputation amongst the nodes. In another work,

Liu et al. (2007) present a scheme for insider attack detection in wireless sensor networks. Though this

work is not explicitly for trust management, one of its contributions is to present a very simple scheme

to impart trust values to the nodes. The idea is to compute the standard error of the metric of interest,

and only those nodes which lie within twice the standard deviation about the mean can be trusted.

2.4 Outlier Detection

Significant research has been done on outlier detection in very large databases or large scale net-

works for detecting anomalies using spatial and temporal correlation or learning-based methods Wang,

Wang, Hong, and Wan (Wang et al.); Wu and Shao (2005); Oliveira et al. (2006); Chen et al. (2006);

Ma and Perkins (2003). These schemes employ complicated techniques such as support vector ma-

chines, regression methods or neural networks. As such, due to the complexity of these schemes, they

are not applicable to resource-constrained wireless sensor networks. Recently, there has been a lot
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of focus on outlier detection in sensor networks Subramaniam et al. (2006); Janakiram et al. (2006);

Sheng et al. (2007). Janakiram et al. (2006) propose an outlier detection scheme using Bayesian belief

networks. However this approach is fairly complex involving a training phase, a testing phase and an

inference phase. Subramaniam et al. (2006) present an online outlier detection scheme for sensor data

using non-parametric models. The authors propose a framework that computes in a distributed fashion

an approximation of multi-dimensional data distributions and demonstrate how the framework can be

extended to identify either distance- or density-based outliers in a single pass over the data. Sheng et al.

(2007) propose a histogram-based method for outlier detection in sensor networks. In the form of a

histogram, hints about the data distribution are collected in a distributed manner. These hints are then

utilized to detect outliers for two different definitions of distance-based outliers.

2.5 Novelty of Our Work

There is significant difference between past research and our work. In general, past research has

focused on computing various types of single-value aggregates (e.g. sum, count, min, max) securely or

accepting the aggregate being correct to a certain probability. Similarly, false data filtering protocols

involve accepting or rejecting single values which are proven equal (with some tolerance) or not equal

to each other. As discussed earlier, this leads to rejection of even genuine but transient data hence we

may not be able to observe the variations in the phenomenon being sensed. Existing trust management

and outlier detection schemes primarily focus on the readings reported by individual sensors and/or

the spatio-temporal correlation over a history of values amongst different sensors. Since the individual

sensors report only their readings, this makes it difficult to judge whether the reading is genuine or false

in the case of a time-variant phenomenon. In this thesis, we focus on solving a novel problem: how to

observe a time-variant phenomenon by accepting the genuine transient data and at the same time limit

the impact of false data injection. In general, it is difficult to distinguish between transient and false

data if sensor reading is the only information reported. In our scheme, the sensor nodes report a simple

statistical digest along with the reading as opposed to reporting only the reading in existing schemes.
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CHAPTER 3. Models and Problem Statement

3.1 System Model

We consider a clustered wireless sensor network that is partitioned into distinct clusters after de-

ployment. Each cluster has a Cluster Head (CH) and a set of sensor nodes, which gather information

and report it to CH . CH does decision making and aggregation on the information received from

sensors and forwards the result to a distant Base Station (BS). Clustering-related issues such as CH

selection and rotation are not the focus of this work.

Distinct clusters could be sensing different phenomena, however we assume that all sensors in a

single cluster sense the same phenomenon. The sampling rate of sensors is dependent on the maximum

temporal change in the phenomenon as well as the maximum spatial diffusion rate. Instead of sending

only the sensed reading to CH , each sensor does a lightweight computation over a moving window of

recent sensed readings and sends a simple statistical digest along with the reading to CH periodically.

3.2 Threat Model

Sensor nodes may be compromised or physically captured. All secret information stored in com-

promised nodes can be accessed by adversaries and they can launch various attacks such as dropping or

altering the message contents going through them, so as to prevent BS from receiving authentic sensor

readings. Also, there may be colluded attacks where two or more compromised nodes collude to let the

false reports escape detection.
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3.3 Problem Statement

Due to time and space variant nature of the phenomenon being monitored, instantaneous sensor

readings recorded by individual sensors in a cluster may vary. In a monitoring application, it is often

critical to observe such transient but genuine data and report them with low false positives. On the other

hand, a compromised node (or a group of colluding compromised nodes) will try to inject false reading

into the network and our aim is to minimize the impact of false data injection and detect it eventually.

Thus, we identify the following design goals for our scheme:

1. it should distinguish genuine transient data from injected false data and report them with low

false positives;

2. false data injection should have minimal impact on the aggregation process and be detected as

soon as possible; and

3. it should tolerate a large number of compromised nodes.



www.manaraa.com

9

CHAPTER 4. Proposed SSTF Scheme

SSTF is in short for Secure Statistical scheme to distinguish data Transience from False injection.

It is a two-tier system with a statistical framework on top of a security framework. Such modular design

enables us to integrate the statistical framework on top of any existing security scheme with necessary

adaptation and enhancement. We present SSTF’s statistical framework in this chapter and Chapter 5

describes one particular realization of SSTF by integrating the proposed statistical framework with an

enhanced version of the IHHAS security scheme proposed in Zhu et al. (2004).

4.1 Statistical Framework

Statistical framework is the kernel of our proposed SSTF scheme. It consists of four types of

operations: Individual Sensor Behavior; Cluster Head Behavior; En-route Node Behavior; and Base

Station Behavior. Table 4.1 summarizes the notations used in this section.

4.1.1 Individual Sensor Behavior

A sensor node senses the phenomenon at the sampling rate. It maintains a buffer with size equal

to the sliding window (w) to store the w most recent readings. Every time a new reading is sensed,

the oldest one is deleted; thus a sliding window of size w is implemented at each sensor. We need to

have w samples to generate a report. After every reporting interval (n samples), the sensor node vk

computes a simple statistical digest consisting of sample mean (μki) and sample variance (σ2
ki) over the

sliding window SWi. This is further illustrated in Fig. 4.1. The report from sensor node vk to CH is

in the format of Rki ≡ 〈rki, μki, σ
2
ki〉.
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Table 4.1 Notations Used to Describe the Statistical Framework

Notation Remarks

P Phenomenon being monitored by a cluster.
D Minimum diffusion rate of P , measured in units/sec.
ρ Phenomenon variation rate: maximum change in the phenomenon per unit time

measured in units/sec (e.g. ppm/sec for gas concentration).
x Sampling rate at each sensor, measured in samples/sec.
d Maximum distance between any two sensor nodes within a cluster, measured in meters.
n Reporting interval: each sensor sends a report to CH every n samples.
SWi Sliding window for generating the i-th report.
w Size of the sliding window.
τ Number of nodes in the cluster (including CH).
vk A sensor in the cluster.
uk An en-route node.
rki Sensed reading reported by vk in the i-th report.
μki Sample mean reported by vk in the i-th report.
σ2

ki Sample variance reported by vk in the i-th report.
Rki The i-th report sent by vk in the format of 〈rki, μki, σ

2
ki〉.

RAgi The i-th aggregated report generated by CH in the format of 〈rAgi , μAgi , σ
2
Agi

〉.

4.1.2 Cluster Head Behavior

In addition to performing the same functions as other sensors in the cluster, CH collects the reports

Rki from all individual sensors for testing and aggregation. CH performs two inter-sensor tests. First,

CH does a distribution test to verify the conformity of the reported digests. Next, by utilizing the

reported digests, CH does a bin test on the reports that pass the distribution test to limit the impact of

false data.

Distribution Test: CH does pairwise tests to check whether the reported distributions N (μki, σ
2
ki)

(1 � k � q) conform to each other, where q � τ is the number of reporting nodes. A minimum of p

nodes need to pass the distribution test for the aggregation to proceed. The number p will be discussed

in Chapter 5. CH takes the means reported by sensors as measurements of a common mean. For two

sensors vj and vk, CH does a z-test Hogg (1983) to check whether the means μji and μki are the same

with α confidence level, where α (0 < α < 1) is a design parameter and different α can be achieved

by adjusting the sliding window size. The z-test procedure is described in Fig. 4.2.
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Figure 4.1 Sliding window implementation and report generation at a particular
sensor node. Sensor index is omitted. ri, μi, σi are respectively the
current reading, mean and standard deviation of w samples in SWi.
Shown are reports for two windows (i = 1, 2). There are n non-over-
lapping samples between two adjacent windows.

z-test for conformity of two sensor reports

For any two sensors vj , vk:
N (μji, σ

2
ji): Distribution reported by vj

N (μki, σ
2
ki): Distribution reported by vk

To test whether μji = μki:

1. Compute standard deviation of the difference distribution: σ2
jk = σ2

ji + σ2
ki.

2. Compute standard error of the means: zjk = |μji−μki|√
σ2

jk
w

.

3. The condition for μji = μki with α confidence level is zjk � zα × σjk. In this paper we use
confidence level of α = 90%; correspondingly zα = 0.1257. Substituting for zij and σij ,

the condition becomes: |μji − μki| � zα × σ2
ji+σ2

ki√
w

.

Figure 4.2 Application of z-test to digests reported by individual sensors.

If γ (p � γ � q) sensors pass the test, CH proceeds to calculate the aggregated mean and vari-

ance based on the sample means and variances reported by the individual sensors that have passed the

distribution test. Specifically, CH takes the means reported by individual sensors as measurements of

a common aggregated mean that needs to be computed. Under this assumption, the aggregated mean

and variance can be computed using Maximum Likelihood Estimation (MLE):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μAgi =
∑γ

k=1 μki/σ2
ki∑γ

k=1 1/σ2
ki

,

σ2
Agi

=
(∑γ

k=1 1/σ2
ki

)−1
.

(4.1)

Bin Test: We utilize the aggregated variance produced at the end of distribution test to limit the
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impact of false data on the aggregation process with the following bin test. The bin test is performed

only on the readings reported by individual sensors that have passed the distribution test, called the

eligible sensors. The intuition behind bin test is that, since all sensors observe the same phenomenon

which is a diffusion process, the difference between genuine readings reported by any two sensors is

most likely to be smaller than twice the aggregated standard deviation (σAgi). Hence, for each eligible

sensor vk, CH utilizes σAgi to form a bin of size [rki − 2σAgi , rki + 2σAgi ]. Then it checks if the

readings reported by other eligible sensors lie in this bin. CH does this for every eligible sensor. Once

it knows the bin sizes of all eligible nodes, it picks the one with largest size and averages the readings

to get the final aggregated reading rAgi . This is illustrated in Fig. 4.3.

Figure 4.3 Bin Test. Number of sensors in Bin1, Bin2, Bin3, Bin4, Bin5 is
4,4,4,4,1 respectively. Hence we have rAg = 1

4(r1 + r2 + r3 + r4).

Finally, CH generates the i-th aggregated report RAgi ≡ 〈rAgi , μAgi , σ
2
Agi

〉, and merges it with

reports received from eligible sensors in the largest bin to form a single message M and forwards it to

BS.

4.1.3 En-route Node Behavior

When an en-route node receives the message, it verifies the integrity of the message. For the

first (t + 1) en-route nodes from CH , instead of MAC (Message Authentication Code), the actual

encrypted data is forwarded and each en-route node tests the conformity between the report by its

lower-associated node in the cluster (Rki) and the aggregated report (RAgi). Specifically, when an
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en-route node uk receives the message generated by CH from its downstream node, it performs the

following tests, termed en-route statistical tests:

• whether σAgi � σki,

• z-test to check whether μAgi = μki with α confidence level,

• whether rAgi ∈ [rki − 2 × σAgi , rki + 2 × σAgi ],

where Rki = 〈rki, μki, σ
2
ki〉 is the report from uk’s lower-associated node in the cluster. If the tests

pass, uk forwards the message to the next en-route node after suitably modifying the message with

proper MAC contents, else it drops the message.

For each en-route node along the remaining path to BS, it verify the integrity of the message by

checking the MAC contents. If it is able to verify, it forwards the message to the next en-route node;

else it drops the message. More about en-route node filtering will be discussed in conjunction with the

security framework in Section 5.3.4.

4.1.4 Base Station Behavior

BS finally verifies the received messages from each CH in the network, and uses them to depict

the variations in the monitored phenomena. BS as such, has no major role in the statistical framework.

4.2 Example

Consider a sensor cluster shown in Fig. 4.4. Source, four sensor nodes and CH are randomly

placed within a circle with radius of 5 units. The source exhibits random variations in the source data

as shown in Fig. 4.5. The window size w = 100 samples. Table 4.2 lists the reports generated by the

sensors at a particular time instant.

1. Distribution Test: Distribution test is performed on μi and σ2
i reported by the sensors. For

example, for sensors v1 and v2, |μ1−μ2| = 1.0759 which is less than (zα× σ2
1+σ2

2√
w

= 18.484). It

is verified that all the pairwise distribution tests pass. As a result, CH computes the aggregated

mean μAg = 99.9034 and aggregated variance σ2
Ag = 146.97.
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Figure 4.4 An example to illustrate Distribution Test and Bin Test.

Table 4.2 List of reports generated by sensors in the example

Sensor r μ σ2

v1 127.719 100.396 735.982
v2 130.709 99.320 734.46
v3 127.680 100.572 735.06
v4 127.761 99.441 734.41
CH 128.519 99.787 734.14

2. Bin Test: The bins are constructed around sensor readings. Since σAg =
√

146.97 = 12.1231,

we have

• Bin1: μ1 ± 2σAg ≡ [103.4729, 151.9652];

• Bin2: μ2 ± 2σAg ≡ [106.4629, 154.9552];

• Bin3: μ3 ± 2σAg ≡ [103.4338, 151.9262];

• Bin4: μ4 ± 2σAg ≡ [103.5148, 152.0072];

• BinCH: μCH ± 2σAg ≡ [104.2728, 152.7652].

It can be seen that all the sensor readings belong to each of the bins. Thus the largest bin size is

5 and rAg = (r1 + r2 + r3 + r4 + r5)/5 = 128.4776.
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Figure 4.5 Source data. Shown are the readings sensed by the sensors vi where
i = 1, 2, 3, 4, CH . There is a delay in the current source value and the
reading measured by the sensor depending on the distance between
them.
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CHAPTER 5. Realization of SSTF with enhanced IHHAS Security Scheme

Here we present a complete realization of SSTF by integrating the afore-described statistical frame-

work with the IHHAS security scheme proposed in Zhu et al. (2004). Since IHHAS is not directly

applicable to SSTF, we need to enhance it to meet our requirements. In the rest of this chapter, we first

give a brief overview of IHHAS, then describe its limitations and finally present the complete SSTF

realization with modified IHHAS.

Similar to IHHAS we make the following security assumptions. Each node shares a master secret

key with BS. Each node knows its one-hop neighbors. Pairwise keys can be established between

next-hop nodes or nodes that are multiple hops away. All nodes are equally trustable and if a node is

compromised, all the information it holds will be exposed. We consider a clustered sensor network

and there can be either one-to-one or many-to-one correspondence between the cluster nodes and the

en-route nodes to BS. Table 5.1 summarizes the notations used in this section.

5.1 Overview of IHHAS

IHHAS consists of five phases: node initialization and deployment, association discovery, report

endorsement, en-route filtering, and base station verification.

5.1.1 Node Initialization and Deployment

The key server loads each node with a unique ID and necessary keying materials. After deployment,

the node establishes a pairwise key with its one-hop neighbors.
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Table 5.1 Notations Used to Describe the Security Framework

Notation Remarks

Ku Key shared between node u and BS.
Kuv Pairwise key shared between nodes u and v.
F Family of pseudo-random functions.
Ka

u Node u’s authentication key: Ka
u = FKu(0).

ui (1 � i � n) En-route nodes from CH to BS.
t Maximum number of tolerable compromised nodes with the original IHHAS.
vi (1 � i � τ) Nodes (including CH) in the cluster (τ � t + 1).

5.1.2 Association Discovery

This phase is for a node to discover the IDs of its associated nodes. The initial path setup consists

of two steps: base station hello and cluster acknowledgment. Incremental association discovery is used

to deal with path changes from CH to BS.

5.1.3 Report Endorsement

IHHAS requires that at least (t + 1) nodes agree on the report for it to be considered a valid report.

Every participating node computes two MACs (Message Authentication Codes) over the event, one

using its shared key with BS (called individual MAC) and the other using the shared key with its upper

associated node (called pairwise MAC). Then it sends the MACs to CH . CH collects MACs from all

the participating nodes, authenticates them, wraps them into a single message and forwards to BS. The

format of the IHHAS message is as follows (assuming t = 3):

M : E,Ci, {v1, v2, v3, CH}, XMAC(E),

{MAC(KCHu4 , E),MAC(Kv3u3 , E),MAC(Kv2u2 , E),MAC(Kv1u1 , E)},
(5.1)

where MAC(Kviui , E), i = 1, 2, 3, 4 are the pairwise MACs and XMAC is a compressed MAC com-

puted by CH using individual MACs as given below:

XMAC(E) = MAC(Ka
v1, E) ⊕ MAC(Ka

v2, E) ⊕ MAC(Ka
v3, E) ⊕ MAC(Ka

v4, E). (5.2)
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5.1.4 En-route Filtering

Each en-route node verifies the MAC computed by its lower associated node, and then removes the

MAC from the received message. If verification succeeds, it attaches a new MAC to the message based

on the pairwise key with its upper associated node and forwards it to BS.

5.1.5 Base Station Verification

BS verifies the report after receiving the message. If the BS detects that at least (t + 1) nodes have

endorsed the report correctly, it accepts the report; otherwise, it discards the report.

5.2 Limitations of IHHAS

While IHHAS works well with the system model described in Zhu et al. (2004), it overlooks the

following scenarios.

5.2.1 Large cluster size not addressed

Designed with the implicit assumption that there are exactly (t + 1) nodes in a cluster (including

CH), IHHAS works well as long as the number of compromised nodes (within cluster or en-route) is

no larger than t. With more than (t+1) nodes in the cluster, the association discovery phase of IHHAS

works incorrectly since it can not guarantee a unique lower-associated node to an en-route node. In this

paper, we generalize IHHAS to accommodate more than (t + 1) cluster nodes.

5.2.2 ID attack not considered

The format of the IHHAS message is given in Eq. (5.1). All en-route nodes only check the pairwise

MACs but do not verify the IDs of sensor nodes endorsing the reports. Only BS can verify the node

IDs and the XMAC. This makes the scheme prone to ID attack, where adversary can simply modify the

node ID list {v1, v2, v3, CH} so that BS cannot verify the XMAC with the modified list hence rejects

the report; in this case, all en-route nodes waste energy in forwarding the message. To overcome this

limitation, we make a simple improvement to IHHAS wherein each node includes its node ID in the
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MAC contents and the en-route nodes verify node ID in the list with node ID carried in the MAC

contents.

5.2.3 Not suitable for distinct reports from sensors

IHHAS works perfectly when all sensors agree on an event E, which means that E could be a

logical or boolean value so that all sensors agree on exactly the same thing. For example, sensors

responding either “Yes” or “No” to a query whether the room temperature is higher than 150oF, would

be such an event. In a scenario where CH needs to do aggregation and sensors could report possibly

different readings and digests which would generally be the case in practice, computation of XMAC as

in Eq. (5.2) is not possible. Further, it may incur significant communication overheads to forward all

individual MACs to BS instead of compressing them.

5.3 Enhancing IHHAS to Integrate with SSTF

To address above inadequacies, following modifications are done to the association discovery

phase; reporting by individual sensors; testing, aggregation and final message preparation by CH;

and the en-route filtering phase in IHHAS.

5.3.1 Association Discovery

There are totally τ � t + 1 nodes (including CH) in the cluster. As in IHHAS, BS sends Hello

message to enable a node to discover its upper associated node. On receiving a Hello message from

BS, a node attaches its own ID to the Hello message before re-broadcasting it. The maximum number

of node IDs that are included in the Hello message is t + 1. CH divides the cluster nodes (including

itself) into (t + 1) groups, gi (1 � i � t + 1), and each group has a minimum of one and a maximum

of ψ = � τ
t+1� nodes. When CH receives the Hello message containing (t + 1) IDs from its previous

hop node, it assigns the (t + 1) IDs to the (t + 1) groups. Thus, all the nodes in a group have a single

upper associated node. Also, CH keeps a list of the nodes in each group.

Example: Fig. 5.1 illustrates the association discovery process (BS “Hello” and cluster “ACK”).

There are a total of τ = 10 nodes. When CH receives the Hello message (u4, u3, u2, u1), it divides
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(BS) (BS,u6) (BS,u6,u5) (BS,u6,u5,u4) (u6,u5,u4,u3) (u5,u4,u3,u2) (u4,u3,u2,u1)

u1

u2

u3

u4
(g4(Ag),
g3(v9,v8,v7),

g2(v6,v4,v3),
g1(v5,v2,v1))

(u1,
g4(Ag),

g3(v9,v8,v7),
g2(v6,v4,v3))

(u2, u1,
g4(Ag),

g3(v9,v8,v7))

(u3, u2, u1,

g4(Ag))
(u4, u3, 
u2, u1)

(u5, u4, 
u3, u2)

(u6, u5,
u4, u3)

Ci

Figure 5.1 An example to show the association discovery process for t + 1 = 4
and τ = 10. The cluster head CH divides the cluster nodes (including
itself) into t + 1 groups and assigns a group ID to each group. Each
group has a maximum of ψ = �τ/(t + 1)� = 3 nodes. BS is the
base station. The contents of “Hello” and “ACK” messages are shown
inside the parenthesis (·).

all the nodes into four groups: (g1(v5, v2, v1), g2(v6, v4, v3), g3(v9, v8, v7), g4(CH)). There can

be a maximum of three nodes in a group. Then it assigns each of (u4, u3, u2, u1) to (g4, g3, g2, g1)

respectively. During the cluster ACK process, the ACK messages carry group ID along with the lists

of nodes for each group so that en-route nodes get to know its lower associated nodes. For example,

when u1 receives (g4(CH), g3(v9, v8, v7), g2(v6, v4, v3), g1(v5, v2, v1)), it knows that its lower

associated nodes are v5, v2, v1 in group g1. It then removes this group and substitutes its ID u1 in

the beginning of the message and forwards (u1, g4(CH), g3(v9, v8, v7), g2(v6, v4, v3)) to u2. The

process proceeds similarly at each en-route node. �

We define Report Limit (θ) as the maximum number of reports from a group that can be used by

CH . It is easy to see that θ � ψ. CH needs at least (t + 1) reports, and at most θ reports from each

group will be used. To satisfy this, our scheme needs reports from at least p nodes in the cluster, where

p is given by:

p = max

(
t + 1, ψ ×

(⌈
(t + 1)

θ

⌉
− 1

)
+ θ

)
. (5.3)

Note that the maximum number of compromised nodes our scheme can tolerate is still t; however

the en-route filtering phase will work only if less than (t + 1)/θ en-route nodes are compromised. If

Nc

(
t+1
θ � Nc � τ

)
nodes are compromised, though BS will eventually detect the false report, the

en-route nodes may not be able to detect it and may keep on forwarding the message. θ is also useful

in the en-route filtering phase which will be discussed in Section 5.3.4.
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5.3.2 Reporting by Individual Sensors

Each sensor node vk in the cluster generates the statistical digest Rki ≡ 〈rki, μki, σ
2
ki〉 and signs it

with the key shared with its upper associated en-route node, Kvkuk
. Then vk sends (Rki, EKvkuk

(Rki, vk))

to CH . Since CH doesn’t have knowledge of Kvkuk
, it can’t modify the second encrypted term in the

above tuple received from vk.

5.3.3 Testing, Aggregation and Final Message Preparation

CH receives reports from nodes in its cluster and performs distribution test and bin test on the

received reports as detailed in Section 4.1. Then CH picks (t + 1) nodes out of the eligible sensors

belonging to the largest bin with the following rules: choose from as many groups as possible, and

select at most θ nodes from each group.

The message M that CH finally generates and forwards to BS consists of the aggregated re-

port RAgi , cluster ID Ci, ID list of the selected (t + 1) nodes and (t + 1) distinct encrypted reports

EKvkuk
(Rki, vk) for each chosen vk, and a special counter κ initially set to zero. For example, in

Fig. 5.1, suppose v1, v2, v3, v4 are chosen from the largest bin, then the message M generated by CH

is:

M ≡ 〈RAgi , Ci, κ = 0, {v1, v2, v3, v4}, {EKv4u2
(R4i, v4), EKv3u2

(R3i, v3),

EKv2u1
(R2i, v2), EKv1u1

(R1i, v1)}〉.
(5.4)

The order of the encrypted reports in M corresponds to that in the cluster ACK message during

the association discovery phase so that a node receiving M knows which reports could be from its

lower-associated nodes. κ is a special counter updated by en-route nodes to keep in track how many

consecutive nodes have not been able to verify any of the reports. It will be described more in the

en-route filtering phase presented next.

5.3.4 En-route Filtering

Notice that the message M sent by CH consists of encrypted reports. We can reduce the size

of this message by using MACs instead of encrypted reports. Unfortunately, this is not possible for

the first (t + 1) en-route nodes. If uk is one of the first (t + 1) en-route nodes, when it receives M, it
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performs en-route statistical tests to check the conformity of the report Rki by its lower associated node

vk in the cluster with the aggregated report RAgi . If the tests pass, uk replaces the encrypted report

with a pairwise MAC which consists of RAgi and the node ID vk and is signed using the pairwise key

shared with its upper-associated en-route node. Thus after (t + 1) hops, all the encrypted reports are

replaced by smaller size MACs.

For the remaining path to BS, when an en-route node uk receives M from its downstream node,

it checks whether the number of different pairwise MACs in M is t + 1. uk tries to verify the last θ

MACs in the pairwise MAC list, based on the pairwise key(s) shared with its lower-associated node(s).

If uk is unable to verify any of the pairwise MACs, it increments κ by 1 and forwards the message to

its upstream node.

If at any point of time κ � �(t + 1)/θ�, it implies that more than �(t + 1)/θ� consecutive en-

route nodes have been compromised and the message will be dropped. On the other hand, en-route

filtering phase of the scheme will not work if more than �(t + 1)/θ� nodes are compromised, since the

compromised nodes may reset κ to zero.

If uk is able to verify ν (� θ) nodes and if uk is more than (t + 1) hops away from BS, it proceeds

to compute ν new pairwise MACs over the report Rki (1 � k � ν) using the pairwise key shared with

its upper-associated node. It then removes the last ν MACs from the MAC list and inserts the ν new

MACs at the beginning of the MAC list. Finally it resets κ to zero and forwards the message to its

upstream node.

Example: Consider the first en-route node u1 in Fig. 5.2. When node u1 receives the message M

BS u6

v7

v9v8

u5 u4 u3 u2 u1

g1

g2

g3

g4

Ci
v1 v2

v5
v3

v6
v4

CH

Figure 5.2 An example to show the en-route filtering process. Reports from nodes
v1, v2, v3, v4 belong to the largest bin and are chosen by CH to be a
part of the final message. Node associations are shown as dashed lines.
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given by Eq. (5.4) from CH , it checks whether there are four encrypted reports. u1 first tries to decrypt

the last report using Ku1v1 . Since it is able to decrypt, it then verifies the conformity of RAgi and R1i.

If tests pass, u1 replaces EKv1u1
(R1i, v1) with MAC(Ku1u5 , RAgi , v1). u1 then tries to decrypt the

next report using Ku1v2 which also holds true. Then u1 does tests for conformity of RAgi and R2i.

If tests pass, u1 replaces EKv2u1
(R2i, v2) with MAC(Ku1u5 , RAgi , v2). At this point, u1 has verified

θ = 2 encrypted reports and it would not attempt verifying any more reports. Since u1 was able to

verify the MACs, it resets the counter κ = 0 and forwards the following message to u2:

M ≡ 〈RAgi , Ci, κ = 0, {v1, v2, v3, v4}, {MAC(Ku1u5 , RAgi , v2),

MAC(Ku1u5 , RAgi , v1), EKv4u2
(R4i, v4), EKv3u2

(R3i, v3)}〉.
(5.5)

Similarly, when u2 receives R, it is also able to verify the last two encrypted reports and replaces them

with MACs signed with the pairwise key shared with its upper-associated node u6. The message that

u2 forwards to u3 becomes:

M ≡ 〈RAgi , Ci, κ = 0, {v1, v2, v3, v4}, {MAC(Ku2u6 , RAgi , v4),

MAC(Ku2u6 , RAgi , v3),MAC(Ku1u5 , RAgi , v2), MAC(Ku1u5 , RAgi , v1)}〉.
(5.6)

Please note that at this point all the encrypted reports have been replaced with MACs and henceforth the

message being forwarded has lower communication costs. Please also note that the MACs are signed

over the aggregated report RAgi . �
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CHAPTER 6. Security Analysis

Individual sensor nodes or CH can lie about the measurements, digests and aggregated reports. All

these attacks are collectively referred to as content attacks. In this section, we present detailed analysis

on various content attacks. Throughout the analysis, for the sake of simplicity, the index of sliding

window in the reports is omitted.

6.1 Content Attacks by Individual Sensors

6.1.1 Effect of False Injection

A pairwise distribution test is performed to test the equality of means reported by the sensor nodes.

Let vj be a compromised node with true mean and variance of (μ, σ2). Assume vj reports (μ′, σ′2)

instead of the true values. To pass the distribution tests, the following conditions should hold:

|μ′ − μk| � zα
σ′2 + σ2

k√
w

; ∀k ∈ [1, τ ], k �= j, (6.1)

where μk and σ2
k are respectively the mean and variance reported by sensor vk, τ is the number of

nodes in the cluster, and w is size of the sliding window.

The reading reported by the sensor should be within certain limits to pass the bin test. The compro-

mised node wants a false reading r′ = r + Δr to get accepted, where r is the true reading measured by

the sensor. We are interested in computing the maximum possible expected distortion that an attacker

can inject without being detected i.e. we want to maximize E[Δr|Δr is accepted]. Consider Fig. 6.1.

r is a valid measurement. Let σ′2
Ag denote the false aggregated variance when the compromised node

reports a false variance σ′2. Then 2σ′
Ag would be the maximum possible difference between the read-

ings allowed by the bin test. rmin and rmax are respectively the true minimum and maximum reading

amongst all the sensors. Assume that the readings follow a uniform distribution over [rmin, rmax]. Let
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Wr = rmax − rmin denote the width of this interval. Then the maximum possible reading that can

escape the bin test is rmin + 2σ′
Ag. For a given r, let IA(Δr) denote the indicator function whether

Figure 6.1 Imposing limits based on the Bin Test.

Δ is accepted, i.e.

IA(Δr) =

⎧⎪⎪⎨
⎪⎪⎩

1, 0 � Δr � rmin + 2σ′
Ag − r,

0, Otherwise.

Then we have:

E[Δr|Δr is accepted] =
∫ rmax

rmin

IA(Δr)Δr
dr

rmax − rmin

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δr, Δr � 2σ′
Ag −Wr,

(2σ′
Ag−Δr)Δ

Wr
, 2σ′

Ag −Wr < Δr � 2σ′
Ag,

0, Δ > 2σ′
Ag.

(6.2)

Differentiating E[Δr] with respect to Δr, we get the optimal Δr = Δ∗
r given by:

Δ∗
r =

⎧⎪⎪⎨
⎪⎪⎩

2σ′
Ag −Wr, Wr < σ′

Ag,

σ′
Ag, Wr � σ′

Ag.

(6.3)

Subsequently, the maximum expectation is given by:

Emax =

⎧⎪⎪⎨
⎪⎪⎩

2σ′
Ag −Wr, Wr < σ′

Ag,

σ′2
Ag

Wr
, Wr � σ′

Ag.

(6.4)

Fig. 6.2 illustrates the variation of expectation with respect to Δr. We can see that Δr is dependent

on the aggregated variance σ′2
Ag and Wr. When the source variation is less, Wr is small and the

compromised node should report r′ = r + 2σ′
Ag − Wr; in case of a highly varying source, Wr is
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Figure 6.2 E[Δr|Δr is accepted] vs. Δr.

large and the compromised node should report r′ = r + σ′
Ag. The impact of the false injection on the

aggregated reading (rAg), denoted by F , is:

F =
Emax

Number of Readings in the Largest Bin
, (6.5)

where Emax is given by Eq. (6.4).

6.1.2 Attack Strategies

There are two strategies for an adversary to inject false data and distort rAg. As can be seen from

Eq. (6.5), the adversary can either attempt to maximize Δr or minimize the number of readings in the

largest bin to increase F .

Strategy 1: The first strategy is to report a small false variance such that the aggregated variance

and hence the bin width is reduced. This is equivalent to decreasing the denominator in Eq. (6.5). As

a result some of the genuine readings are excluded from aggregation and hence, the false data injected

by the adversary can have more impact. However, due to reduced bin width, the distortion Δr that can

be introduced into the reading is also small.

Strategy 2: The other strategy is to report a large variance such that the aggregated variance is

increased. This results in a larger bin width and hence, larger distortion Δr can be introduced into the

reading.
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Figure 6.3 Demonstrating the relation between the bin size and the aggregated
standard deviation.

6.1.3 Selecting the Best Strategy

Let σ
(0)
Ag be the genuine aggregated standard deviation and σ

(1)
Ag and σ

(2)
Ag be the false aggregated

standard deviation computed using Strategy 1 and Strategy 2 respectively. Consider Fig. 6.3. Let

P0, P1, P2 denote the probability that a reading lies in the bins [Ai, Di] (i.e., μ ± 2σ
(i)
Ag; i = 0, 1, 2)

for the cases of no compromised node, one compromised node using Strategy 1, and one compromised

node using Strategy 2, respectively. E is the number of eligible sensors. The bin size i.e. the ex-

pected number of readings that lie in the bins [A0, D0], [A1, D1], [A2, D2] is given by EP0, EP1, EP2

respectively. From Fig. 6.3, we can see that:

P1

P2
=

Area(A1B1C1D1)
Area(A2B2C2D2)

>
σ

(1)
Ag

σ
(2)
Ag

=⇒ σ
(1)
Ag

P1
<

σ
(2)
Ag

P2
. (6.6)

The adversary introduces a distortion of Δ∗
r according to Eq. (6.3). The attack can be analyzed for

the following three cases.

• Case 1: Wr < σ
(1)
Ag < σ

(2)
Ag :

Using Eqs. (6.4) and (6.5), the effect on false reading using Strategy 1 and Strategy 2 is F1 =
2σ

(1)
Ag−Wr

EP1
and F2 =

2σ
(2)
Ag−Wr

EP2
respectively. From Eq. (6.6), it can be easily seen that:

2σ
(1)
Ag −Wr

EP1
<

2σ
(2)
Ag −Wr

EP2
, (6.7)

implying F2 > F1.

• Case 2: σ
(1)
Ag < Wr < σ

(2)
Ag :

In this case, the effect on false reading using Strategy 1 and Strategy 2 is F1 =
σ

(1)2
Ag

EP1Wr
and
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F2 =
2σ

(2)
Ag−Wr

EP2
respectively. From Eq. (6.6), we have:

σ
(1)
Ag

P1
<

σ
(2)
Ag

P2
=⇒ σ

(1)
Ag

EP1
<

σ
(2)
Ag + (σ(2)

Ag −Wr)

EP2
(∵ σ

(2)
Ag > Wr)

=⇒ σ
(1)
Ag

EP1
<

2σ
(2)
Ag −Wr

EP2
.

(6.8)

Since σ
(1)
Ag < Wr, multiplying the LHS of above equation by

σ
(1)
Ag

Wr
and RHS by 1, we get

σ
(1)
Ag

EP1
· σ

(1)
Ag

Wr
<

2σ
(2)
Ag −Wr

EP2
· 1 =⇒ σ

(1)2
Ag

EP1Wr
<

2σ
(2)
Ag −Wr

EP2
, (6.9)

implying F2 > F1.

• Case 3: σ
(1)
Ag < σ

(2)
Ag < Wr:

In this case, the effect on false reading using Strategy 1 and Strategy 2 is F1 =
σ

(1)2
Ag

EP1Wr
and

F2 =
σ

(2)2
Ag

EP2Wr
respectively. From Eq. (6.6), it can be easily seen that

σ
(1)2
Ag

EP1Wr
<

σ
(2)2
Ag

EP2Wr
, (6.10)

implying F2 > F1.

From the three exhaustive cases discussed above, we conclude that the attacker can cause maximum

distortion in rAg when it adopts Strategy 2. So, the compromised node should report a high variance.

For maximum impact, the adversary reports a fake variance equal to ∞. Hence, the adversary reports

σ′2 = ∞. Consequently, regardless of the false μ′ being reported, the resultant μ
(2)∗
Ag and σ

(2)∗2
Ag is:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ
(2)∗
Ag =

∑γ
k=1
k �=j

μk/σ2
k∑n

k=1
k �=j

1/σ2
k

,

σ
(2)∗2
Ag =

(∑γ
k=1
k �=j

1/σ2
k

)−1

,

(6.11)

where j is the index of the compromised sensor node.

Further, from Eq. (6.5), the effect on rAg is:

F =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2σ
(2)∗
Ag −Wr

EP2
, Wr < σ

(2)∗
Ag ,

σ
(2)∗2
Ag

EP2Wr
, Wr � σ

(2)∗
Ag ,

(6.12)

where σ
(2)∗
Ag is given by Eq. (6.11).
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6.2 Content Attacks by the Cluster Head

CH produces an aggregated report RAg which is verified by the en-route nodes for conformity

with the individual sensor reports Rk. The worst case performance of the system occurs when CH

is compromised. This happens because compromised CH can lie about the aggregated report RAg =

〈rAg, μAg, σ
2
Ag〉. The following conditions should hold for RAg to pass the en-route statistical tests:

• From Eq. (4.1), we can see that σAg � min(σk) for each sensor vk whose report is included in

the final message M. Hence RAg with a larger σAg will be rejected. To alter μAg and rAg, CH

chooses the largest possible σAg given by: σ′
Ag = min(σk).

• Each of the first (t+1) en-route nodes, say u, performs distribution test to test the equality of the

aggregated mean μAg with the mean μk reported by its lower associated node vk in the cluster.

The maximum false μ′
Ag that would satisfy the distribution test is given by:

μ′
Ag = min

(
μk + zα

min(σ2
k) + σ2

k√
w

)
, (6.13)

where k is index of the eligible sensors (from the largest bin) whose reports are included in the

final message.

• Further, the aggregated reading rAg should satisfy bin test at each of the first (t + 1) en-route

nodes. Let rAg be the true aggregated reading, and r′Ag be the maximum acceptable false reading

reported by compromised CH . It is easy to see that, if CH reports r′Ag = min(rk)+2min(σk),

it will always be accepted. Thus, CH can distort the true readings by a maximum of rAg −
min(rk) + 2min(σk).

Since our security framework is based on IHHAS, our scheme is equally resilient as IHHAS to

other security attacks, such as outsider attacks, replay attacks, cluster insider attacks and en-route

insider attacks. Discussions on those security attacks are omitted since they are not the focus of our

work.
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6.3 Summary

We mentioned in Section 5.3.1, the maximum number of compromised nodes our system can ac-

cept is t, where t is a system parameter. (t + 1 is the number of encrypted reports / MACs kept in the

messages forwarded to the base station). However, this statement is for the general case, where both

the cluster nodes and cluster head are compromised. We can achieve a much better performance if the

cluster head is not compromised. This is due to the fact that if a large number of non-compromised

nodes are present in the cluster, the bin test will be successful to filter out the non-conforming false

data injected by the adversaries. False data conforming to the bin test, on the other hand, will not sig-

nificantly change the aggregated result. Hence when CH is not compromised, the system can tolerate

max(t, majority - 1) number of compromised nodes. For example, if t is 3, number of cluster nodes is

12, the system can accept maximum 5 compromised nodes; if t is 5, number of cluster nodes is 8, the

system can accept maximum 5 compromised nodes.
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CHAPTER 7. Performance Evaluation

We study the performance of SSTF by simulation. We compare SSTF with a simple majority voting

scheme to show its effectiveness in preserving transient data. We also demonstrate the limited impact

of false data with SSTF in the presence of compromised nodes under various attack strategies, and

compare it with two recent works, one being an outlier detection scheme and the other a reputation-

based scheme.

7.1 Simulation Setup

The wireless sensor network is divided into circular clusters. Each cluster is responsible for sensing

the time-varying phenomenon in its region. We focus on one particular cluster shown in Fig. 7.1 to

demonstrate our scheme. Cluster nodes are randomly placed in the circular region and one of the nodes

is CH . A single source is present at a random location in the cluster. The phenomenon exhibits a radial

diffusion pattern, implying that the sensors nearest to the source sense the change first. Table 7.1 lists

the parameters used for simulation.

Table 7.1 Simulation Parameters

Parameter Notation Value

Phenomenon variation rate ρ 10 units/sec
Maximum inter-sensor distance d 10 meters
Diffusion rate D 2 units/sec
Sampling rate x 10 samples/sec
Reporting interval n 25 samples
Sliding window size w 1000 samples
Number of nodes in the cluster τ 10
Random measurement error at sensors N (0, 0.01)
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Figure 7.1 Simulation setup.

7.2 Simulation Results

We conduct various simulations to demonstrate the effectiveness of SSTF in meeting its design

goals viz. preservation of data transience and limiting the impact of false data injection.

7.2.1 Preservation of Data Transience

We consider the performance of our scheme in the presence of no compromised nodes. The phe-

nomenon varies from 0 units/second to 50 units/second which amounts to a change of 0 units/sample

to 5 units/sample. Fig. 7.2 plots the simulation results. In our scheme most of the times all the genuine

data is preserved regardless of transient variations. It is observed that when the variation rate is small,

up to 30% of the nodes are excluded from participating in the aggregation. This happens because the

bin size becomes very small when the source is constant. However, this doesn’t hamper the ability of

our scheme to monitor transient data since some genuine nodes are excluded from the largest bin only

when source data is itself constant and there is negligible impact on rAg.

We compare our scheme to a simple majority voting scheme where the nodes agree if the readings

reported are within random measurement error of each other. When there is no variation, the readings

are pretty constant and all the nodes agree. However, as the variation rate increases, the readings

amongst sensors do not agree with each other anymore, and more and more genuine data are excluded
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Figure 7.2 Percentage of genuine readings excluded vs. Phenomenon variation
rate.

from aggregation. Thus the system starts losing “important” information during data transience which

is not desired. We can see in Fig. 7.2, almost 60% genuine data is lost at high variation rate.

7.2.2 Limiting the Impact of False Data Injection

In Fig. 7.3, we show the effect of false data with respect to different phenomenon variation rates

and false injection.
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Figure 7.3 False effect vs. Phenomenon variation and false injection. Phe-
nomenon variation is indicated by source data standard deviation and
z-axis shows the impact on rAg as a percentage of source data standard
deviation.
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X-axis represents the standard deviation of the varying source data which is indicative of phe-

nomenon variation. Y-axis represents the false injection. Z-axis represents the effect on rAg expressed

as a percentage of the source data standard deviation. It can be seen that, for a constant false injection,

the impact of false data increases with the phenomenon variation rate. On the other hand for a constant

rate, as the false injection is increased, the impact of false data first increases and then decreases and

becomes zero as the false injection is increased further. This is attributed to the fact that the false read-

ing remains no longer a part of the largest bin and is excluded from aggregation. It is also observed

that impact on rAg is very limited (up to 2% of source data standard deviation) which conforms to our

security analysis (refer to Section 6.1).

7.2.3 Comparison with Other Schemes

To further demonstrate the effectiveness of SSTF in limiting the impact of false data, we compare

our scheme with two recent works. The first scheme Yang et al. (2006) is an outlier detection scheme

based on Grubbs’ test Frank (1969) referred to as Grubbs’ Test outlier detection scheme. In this scheme

the cluster nodes report only the sensed readings. During the decision making process, CH calculates

the mean of the received readings and computes a standard error of the readings about this mean to find

the outliers. Then CH excludes the outliers and averages the remaining readings to generate the final

aggregated reading.

The second scheme Zhang et al. (2006) is a reputation based scheme based on KL-Distance tech-

nique Cover and Thomas (1991) referred to as KL-Distance reputation-based scheme. In this scheme

the cluster nodes report sensed readings only. However, CH forms a reputation for each of the sensors

based on the history of readings received by computing KL-Distances. By applying a K-means clus-

tering algorithm it forms groups and averages the readings from the group with highest reputation for

generating the aggregated reading.

The results are shown in Fig. 7.4 and Fig. 7.5. Shown in each figure is a snapshot of a randomly

varying source; the Y-axis represents the value in units of the phenomenon; the X-axis represents the

report index and a stretch of 100 reports is shown. In Fig. 7.4 there is only one compromised node

while in Fig. 7.5 there are four compromised nodes doing a colluded attack and we can see that SSTF
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Figure 7.4 Demonstrating the effectiveness of SSTF in the presence of one com-
promised node. Shown are two attack strategies. In (a), the attacker
chooses to inject false data that complies to the bin test and in (b), the
attacker injects arbitrarily random false data.

is able to preserve the data transience and resembles the source data closely in both cases.

Fig. 7.4(a) shows the case when attacker does a subtle attack by reporting false readings that pass

the distribution test and bin test. However, the impact on the aggregated reading is almost negligible.

In Fig. 7.4(b), the attacker injects arbitrarily random false data, which doesn’t alter the result of

our scheme either. This is because most of the injected false data has been excluded during the testing

process. However it is seen in Fig. 7.4 that Grubbs’ test outlier detection scheme can sometimes

perform as good as our scheme. This happens because, when the number of compromised nodes is

small, the false data could be identified successfully. KL-Distance reputation-based scheme performs

poorly because the reputation over a history of readings enables even the false readings to pass the test.

In contrast, Fig. 7.5 shows the performance comparison of the schemes in the presence of four

compromised nodes. In this case, our scheme still performs well due to the bin test, while the other

two schemes fail significantly because four out of ten cluster nodes are compromised and perform a

colluded attack. Since only the current readings are reported in these two schemes, the colluded false

readings usually pass the test and get to participate in the aggregation, resulting in a prominently false

reporting.
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Figure 7.5 Demonstrating the effectiveness of SSTF in the presence of four com-
promised nodes. Shown are two attack strategies. In (a), the attacker
chooses to inject false data that complies to the bin test and in (b), the
attacker injects arbitrarily random false data.
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CHAPTER 8. Conclusions and Future Directions

One of the important security concerns in wireless sensor networks is false data injection attack

wherein the adversary captures a sensor and starts injecting malicious data into the network. In the past,

many schemes have been presented to deal with false data injection attacks. However, we observed and

demonstrated that these schemes cease to give satisfactory performance in the presence of a source

exhibiting time varying phenomenon. In most of the existing schemes sensors report a single value

(only their current reading) to the cluster head for decision making purposes. This makes it difficult to

judge whether the reading is genuine or false in the case of a time-variant phenomenon.

In this work, we provide statistical tools and techniques to overcome the limitations in existing

schemes and give mathematical analysis and simulations to demonstrate the effectiveness of our pro-

posed statistical framework. We show the modularity of the statistical framework and how it can be

applied on a security scheme suitably enhanced to work with the framework. We evaluate the perfor-

mance of our scheme in various phenomenon variation scenarios for varying percentages of adversaries

in the network and observe that our scheme achieves its goal of minimizing the impact of false injection

while preserving phenomenon variations.

To show a complete realization of our statistical framework, we present SSTF, a secure statistical

scheme to distinguish data transience from false injection in clustered sensor networks. SSTF employs

our developed statistical framework and we enhance the IHHAS scheme to be used as the underlying

security framework. In contrast to existing false data filtering schemes, SSTF requires each individual

sensor to report a statistical digest, in addition to the sensed reading and we emphasize the merits of

this strategy to effectively monitor transient variations in the phenomenon. Through detailed theoretical

analysis and extensive simulation study, we demonstrate the effectiveness of SSTF in preserving the

transient data while being resilient to false data injection attacks.



www.manaraa.com

38

Several important research directions emerge from my work. We can find more applications of our

framework to design schemes to preserve false data injection in the presence of transient phenomenon

in a dynamic topology sensor network or in a structure-free aggregation setup. We designed SSTF

primarily for applications requiring periodic reporting and monitoring, it could be investigated into

applying SSTF to query-based setup, wherein the sensors respond to a query from BS. We could also

investigate the extension of our current idea to scenarios with a more general sense or aggregation such

as network coding as part of the aggregation scheme. Further, our scheme could be applied to other

diverse research topics such as mesh network security or spam filtering in the internet.
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